Chem. Ber. 111, 3719 – 3725 (1978)

Reaktionen von Quadratsäure mit Triphenylphosphin-Platin(0)-Verbindungen 1)

Wolfgang Beck*)*, Franz Goetzfried*) und Michael W. Chen**)

Institut für Anorganische Chemie der Universität München, Meiserstr. 1, D-8000 München 2*, und

Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, U.S. A.**)

Eingegangen am 15. Februar 1978

Quadratsäure zeigt gegenüber Pto-Verbindungen drei Reaktionsmöglichkeiten: Der Säurecharakter der Quadratsäure kommt bei der Bildung des kationischen Hydridkomplexes $[HPt(PPh_3)_3]^{\oplus}$ $[HC_4O_4]^{\ominus}$ (1) aus $Pt(PPh_3)_4$ zum Ausdruck; mit $(PPh_3)_2Pt(C_2H_4)$ entsteht dagegen der Olefinkomplex 2. Erhitzen von 1 bzw. 2 auf 130°C liefert unter Öffnung des Vierrings das Dihydroxyplatinacyclopentendion 3.

Reactions of Squaric Acid with Triphenylphosphine Platinum(0) Compounds 1)

Squaric acid shows three types of reactions with zerovalent platinum compounds: with Pt(PPh₃)₄ it reacts as an acid to form [HPt(PPh₃)₃][®] [HC₄O₄][©] (1). From (PPh₃)₂Pt(C₂H₄) the olefin complex 2 is obtained. Heating of 1 and 2, respectively, leads to ring opening to give the dihydroxyplatinacyclopentenedione 3.

Das komplexchemische Verhalten der Quadratsäure²⁾ wurde bisher nur wenig untersucht. West und Niu3) berichteten über die Darstellung von Metall(II)- und Metall(III)-Verbindungen, M^{II}C₄O₄ · 2H₂O und M^{III}(OH)C₄O₄ · 3H₂O (M^{II} z. B. Ni, Zn; M^{III} z. B. Al, Fe). Die Strukturen dieser Verbindungen wurden vor kurzem röntgenographisch aufgeklärt 4). In Fortführung unserer Untersuchungen über Reaktionen von Metallkomplexen mit gespannten Ringsystemen 1) wurde das Verhalten von Quadratsäure gegenüber Platin(0)-Verbindungen geprüft.

Reaktion als Säure

Quadratsäure ist eine starke zweibasige Säure (p $K_1 = 0.54$, p $K_2 = 3.48^{5}$). Die Umsetzung mit Tetrakis(triphenylphosphin)platin(0) in siedendem THF liefert unter Ab-

¹⁾ VIII. Mitteilung über Reaktionen von Metallkomplexen mit gespannten Ringen; VII. Mitteil.:

W. Danzer, W. Beck und M. Keubler, Z. Naturforsch., Teil B 31, 1360 (1976).

2) 2a) H. E. Sprenger und W. Ziegenbein, Angew. Chem. 80, 541 (1968); Angew. Chem., Int. Ed. Engl. 7, 530 (1968). — 2b) R. West und J. Niu in Nonbenzenoid Aromatics (J. P. Snyder), Bd. 1, Kap. 6, Academic Press, New York 1969; R. West und J. Niu in The Chemistry of the Carbonyl Group (J. Zabicky), Bd. 2, Kap. 4, Interscience, New York 1970.

³⁾ R. West und H. Y. Niu, J. Am. Chem. Soc. 85, 2589 (1963).

⁴⁾ A. Weiß und E. Riegler, Z. Naturforsch., Teil B, im Druck.

⁵⁾ L. M. Schwartz und L. O. Howard, J. Phys. Chem. 75, 1798 (1971).

[©] Verlag Chemie, GmbH, D-6940 Weinheim, 1978

spaltung eines Triphenylphosphinliganden den kationischen Hydridokomplex 1, der ein Quadratsäure-Monoanion enthält.

$$\begin{array}{c} O \\ O \\ O \\ O \\ O \\ \end{array} \begin{array}{c} O \\ + \\ Pt(PPh_3)_4 \end{array} \begin{array}{c} -65\,^\circ\!\!C,THF \\ \hline -PPh_3 \end{array} \begin{array}{c} O \\ O \\ O \\ \end{array} \begin{array}{c} O \\ (HPt(PPh_3)_3)^{\oplus} \cdot 2 \text{ THF} \end{array}$$

Analoge Hydridokomplexe der Formel $[HPt(PPh_3)_3]^{\oplus}X^{\ominus}$ werden bei der Umsetzung von $Pt(PPh_3)_4$ mit Mineralsäuren mit schwach nucleophilen Anionen erhalten 6. Die oxidative Addition des zweiten Protons der Quadratsäure an ein weiteres $Pt(PPh_3)_4$ gelingt nicht mehr, hierzu ist möglicherweise die Acidität des gebildeten Quadratsäure-Monoanions zu gering. 1 wird durch die elektrische Leitfähigkeit in Aceton 7 sowie durch die v(Pt-H)-Absorption im IR bei $2110 \, \mathrm{cm}^{-1}$ [fest in Nujol; $v(Pt-D) = 1515 \, \mathrm{cm}^{-1}$] und durch das NMR-Signal des Hydrid-Wasserstoffs bei hohem Feld (vgl. Tab. 3) als kationischer Hydrid-Komplex ausgewiesen. Das Hochfeld-1H-NMR-Spektrum zeigt die erwartete Feinstruktur 6; es besteht aus einem 1:2:1-Triplett, hervorgerufen durch die Kopplung mit den beiden äquivalenten *cis*-ständigen 31P-Kernen. Das *trans*-ständige Phosphin führt zu einer weiteren Aufspaltung in ein Dublett. Die beobachteten Satelliten rühren von der Kopplung mit 195 Pt (I=1/2, natürliches Vorkommen 33%) her. Die 1 H-NMR-Daten bestätigen die quadratisch-planare Struktur des Hydrids 1.

Im protonenentkoppelten ³¹P-NMR-Spektrum tritt für die drei Phosphorkerne nur ein Signal auf (Tab. 3).

Die tiefe Lage und die geringe Halbwertsbreite des Protonen-Signals des Quadratsäure-Monoanions weisen auf den Säurecharakter des Monoanions und eine im Sinne der NMR-Zeitskala rasche Prototropie zwischen den Sauerstoffatomen hin. Die Prototropie und die daraus folgende D_{4h} -Symmetrie des C_4 -Gerüstes wird durch das 13 C-NMR-Spektrum in CDCl₃ bestätigt; für das Monoanion der Quadratsäure wird nur ein 13 C-Signal bei $\delta = 196.53$ beobachtet $(C_4O_4^{\ 2^-}: \delta = 203.05^{\ 8})$.

Tab. 1. Charakteristische IR-Absorptionen (cm⁻¹) von 1 und den Kaliumsalzen der Quadratsäure (fest in Nujol) im Bereich von 1400–1900 cm⁻¹ a)

1	$\mathrm{KHC_4O_4}\cdot\mathrm{H_2O^{9)}}$	$K_2C_4O_4^{10)}$	Zuordnung $^{9,10)}(D_{4h})$
1791 s	1808 m	1794 ^{b)} s	v ₁ (A _{1g}), CO-Streckschw.
1673 st	1672 st		
1528 sst, b	1640 st	1530 sst, b	v ₁₂ (E _u), CO-Streckschw.
1476 st	1482 s		

a) s = schwach, m = mittel, st = stark, sst = sehr stark, b = breit, sh = Schulter.

b) Ramanbande.

⁶⁾ E. L. Muetterties in Transition Metal Hydrides, Marcel Dekker Inc., New York 1971.

⁷⁾ Vergl. I. V. Gavrilova, M. I. Gel'fman, N. V. Ivannikova und V. V. Razumovskii, Russ. J. Inorg. Chem. 16, 596 (1971).

⁸⁾ G. Fodor, G. Allen, A. K. Bose und P. R. Srinivasan, Abstracts, 168 th National Meeting of the American Chemical Society, Atlantic City, N. Y. 1974.

⁹⁾ D. P. C. Thackeray und R. Shirley, J. Cryst. Mol. Struct. 2, 159 (1972); D. Semmingsen, Acta Chem. Scand., Ser. A 30, 808 (1976); NMR-Untersuchungen zum Vorliegen einer Prototropie in KHC₄O₄ · H₂O bzw. LiHC₄O₄ · H₂O existieren unseres Wissens bisher nicht.

¹⁰⁾ M. Ito und R. West, J. Am. Chem. Soc. 85, 2580 (1963).

Im IR-Spektrum von 1 wird entsprechend der Prototropie in $CHCl_3$ -Lösung keine v(OH)-Bande gefunden. Auch im IR-Spektrum von festem 1 (in Nujol bzw. KBr) läßt sich keine OH-Streckschwingung lokalisieren; im bekannten $KHC_4O_4 \cdot H_2O$ treten dagegen zwei v(OH)-Absorptionen bei 3384 und 3535 cm⁻¹ auf⁹⁾. Im Bereich der CO-Streckschwingungen findet man einige Gemeinsamkeiten mit den Spektren von $K_2C_4O_4$ und $KHC_4O_4 \cdot H_2O$ (Tab. 1).

,Transmission windows', die bei $KHC_4O_4 \cdot H_2O$ beobachtet werden 9), erscheinen im IR-Spektrum von 1 nicht.

Reaktion als Olefin

Röntgenstrukturanalysen zeigen, daß das Quadratsäuremolekül unsymmetrisch gebaut ist und eine C=C-Doppelbindung enthält $^{11,12)}$. Die Reaktion mit $(PPh_3)_2Pt(C_2H_4)$ in THF bei $50\,^{\circ}C$ führt unter Substitution des Ethylens zum Olefinkomplex 2, dessen IR-Spektrum große Ähnlichkeit mit dem Spektrum der freien Quadratsäure aufweist (Tab. 2).

In 2 scheinen ebenso wie in Quadratsäure selbst starke intermolekulare Wasserstoff-brückenbindungen vorzuliegen. Die OH-Protonen sind im 1 H-NMR-Spektrum von 2 nicht festzustellen. Die hohe $^1J_{PtP}$ -Kopplungskonstante von 3210 Hz ist vergleichbar mit dem $^1J_{PtP}$ -Wert von 3700 Hz in $(PPh_3)_2Pt(C_2H_4)^{13}$. Ähnliche (Cyclobutendion)-bis(phosphin)platin-Komplexe wurden von *Kemmitt* et al. beschrieben 14) und von *Russell* und *Tucker* 15) röntgenographisch untersucht. Für das Vorliegen einer Cyclobutendiyliumtetrolat-Struktur 2a,16) in 2 gibt es keine Hinweise.

Die Darstellung eines Komplexes mit einem sandwich-gebundenen Quadratsäure-Dianion durch Umsetzung von 2 mit Natriumethylat gelang nicht; aus dem Reaktions-

¹¹⁾ D. Semmingsen, Acta Chem. Scand. 27, 3961 (1973).

¹²⁾ Y. Wang, G. D. Stucky und J. M. Williams, J. Chem. Soc., Perkin Trans. 2 1974, 35.

¹³⁾ K. Schorpp, Dissertation, Univ. München 1972.

¹⁴⁾ E. R. Hamner, R. D. W. Kemmitt und M. A. R. Smith, J. Chem. Soc., Chem. Commun. 1974, 841.

¹⁵⁾ D. R. Russell und P. A. Tucker, J. Chem. Soc., Dalton Trans. 1976, 2181.

¹⁶⁾ G. A. Olah und G. D. Mateescu, J. Am. Chem. Soc. 92, 1430 (1970).

¹⁷⁾ F. G. Baglin und C. B. Rose, Spectrochim. Acta, Sect. A 26, 2293 (1970).

¹⁸⁾ D. Eggerding und R. West, J. Am. Chem. Soc. 98, 3641 (1976).

¹⁹⁾ R. Ugo, S. Cenini, M. F. Pilbrow, B. Deibl und G. Schneider, Inorg. Chim. Acta 18, 113 (1976).

²⁰⁾ P. Chini und G. Longoni, J. Chem. Soc. A 1970, 1542.

²¹⁾ S. H. Mastin, Inorg. Chem. 13, 1003 (1974).

²²⁾ M. T. Reetz, G. Neumeier und M. Kaschube, Tetrahedron Lett. 1975, 1295.

	Quadratsäure 17)	2	3	4 14)	Quadratsäure- bis(trimethyl- silylester) 18)	5 a)
v(OH)	2000 – 3000 st, b	2300 – 3100 m, b	3350 m b, c) 3270 st			· · · · · · ·
ν(CO) bzw.	1822 m 1643 st	1804 s 1664 m	1699 m 1577 sst	1659 st 1650 (sh)	1820 m 1745 st	1683 s 1653 m
v(CC)	1513 st 1380 st	1552 st, b 1450 st, b	1352 st 1318 st		1610 st	1600 ss

Tab. 2. v(OH)-, v(CO)- und v(CC)-IR-Banden von Quadratsäure, Quadratsäure-bis(trimethylsilylester) und 2-5 (cm⁻¹; fest in Nujol)

gemisch ließ sich lediglich $Pt(PPh_3)_3$ isolieren. Die Umsetzung von Dinatriumquadratat mit $(PPh_3)_2Pt(C_2H_4)$ führt zu keiner Koordination des Vierringes; in siedendem THF bildet sich unter Ethylenabspaltung langsam der rote Cluster $[Pt(C_6H_4PPh_2)(PPh_2)]_3^{19}$.

Reaktion unter Ringöffnung

Durch Erhitzen von 1 in Diglyme auf $130\,^{\circ}$ C erhält man Ringerweiterung unter Einschiebung einer Pt(PPh₃)₂-Einheit zum Dihydroxyplatinacylopentendion 3. Die hohe Reaktionstemperatur führt unter Gasentwicklung zu einer partiellen Zersetzung des Vierringes; als Nebenprodukt kann dabei (PPh₃)₃Pt(CO)[v(CO) = 1940 cm⁻¹ in Nujol ²⁰] isoliert werden. Unter den gleichen Reaktionsbedingungen ist 3 in besseren Ausbeuten aus 2 zugänglich.

3 kann in tautomeren Formen auftreten; über die Lage des Tautomeriegleichgewichts lassen sich keine Aussagen machen. Die v(OH)-Banden von 3 sind sowohl in Lösung wie in festem Zustand relativ scharf. Die vorgeschlagene Struktur mit zwei *cis*-ständigen Phosphinen wird durch das Auftreten einer intensiven Bande bei 541 cm⁻¹ gestützt²¹⁾.

Der "Dimethylester" 4 von 3 wurde bereits früher von Kemmitt ¹⁴⁾ durch Umsetzung von 1,2-Dimethoxycyclobutendion mit Pt⁰-Verbindungen erhalten.

Die Struktur von 3 wurde durch oxidative Addition von Quadratsäure-bis(trimethylsilylester)^{18,22)} an Platin(0) zu 5 und anschließende Alkoholyse des Fünfringes zu 3 bewiesen. Die Insertion von Platin(0) in eine C-C-Einfachbindung des Bis(trimethylsiloxy)cyclobutendions erfolgt im Gegensatz zur Reaktion mit Quadratsäure selbst unter den gleichen milden Bedingungen wie die Öffnung des 1,2-Dimethoxycyclobutendions mit Pt^{0 14)}.

a) In THF: 1674 s, 1656 m, 1591 sst.

^{b)} v(OD) = 2482, 2440.

c) In CHCl₃: 3380.

Überraschenderweise erhält man für die beiden Trimethylsilylgruppen in 5 bei 30°C nur ein Signal im ¹H-NMR-Spektrum. Da Cyclobutendione stets unsymmetrisch geöffnet werden ¹⁴⁾, sollten zwei Signale für 5a auftreten. Bei –65°C erscheinen zusätzliche Methylsignale; dies spricht für ein Gleichgewicht zwischen den Isomeren 5a und 5b. Das ³¹P-NMR-Spektrum (bei 30°C) zeigt nur ein Signal und damit die Äquivalenz der beiden Phosphinliganden. Die niedrige Kopplungskonstante ist charakteristisch für Platinacyclopentendion-Verbindungen ²³⁾. Im Quadratsäure-bis(trimethylsilylester) findet bei erhöhter Temperatur eine Äquilibrierung der C-Atome des Vierringes statt ²²⁾.

3 ist an der Luft und auch thermisch bis zum Zersetzungspunkt stabil. Die Verbindung besitzt sauren Charakter und reagiert leicht mit Alkoholat zu Pt(PPh₃)₃ und mit Na unter Gasentwicklung.

	,				
	$\delta^1 H^{a)}$	$\delta^{31}P^{b)}$	δ ¹³ C ^{a)}		
1	13.57 (OH) 7.38 7.25 7.02 (Phenyl) 3.96 1.81 (THF) ${}^{1}J_{PiH} = 774$ $-5.01 (PtH) {}^{2}J_{PiH}cis = 25$ ${}^{2}J_{PiH}rans = 164$	$-23.2 {}^{1}J_{\text{PtP}} = 2830$	196.53 (C ₄) 133.56 131.35 128.82 (Phenyl)		
2	_	$-29.9^{-1}J_{PtP} = 3210$	_		
4	$0.26 (SiMe_3)$	$-26.4 {}^{1}J_{PtP} = 1990$	_		

Tab. 3. NMR-Daten (in CDCl₃, J in Hz)

Wir danken der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie für die Förderung unserer Arbeiten. F. G. ist dem Verband der Chemischen Industrie für ein Chemiefonds-Stipendium zu besonderem Dank verpflichtet. Herrn Dr. D. F. Hillenbrand, Madison, danken wir für wertvolle Diskussionen.

a) Interner Standard TMS.

b) 85 proz. H₃PO₄ als Standard.

²³⁾ E. R. Hamner, R. D. W. Kemmitt und M. A. R. Smith, J. Chem. Soc., Dalton Trans. 1977, 261.

Experimenteller Teil

Zur Aufnahme der NMR-Spektren wurden gesättigte Lösungen verwendet. ¹H-NMR-Spektren: Varian A-60, Bruker WH-270 (1). – ³¹P-NMR-Spektren: Varian HA-100, 40.48 MHz. – ¹³C-NMR-Spektren: Jeol FX-60. – IR-Spektren: Perkin-Elmer Spektrometer 325. – Leitfähigkeitsmessung: WTW-Leitfähigkeitsmeßgerät LBR.

Sämtliche Versuche wurden in Stickstoffatmosphäre unter Luft- und Feuchtigkeitsausschluß durchgeführt. Die verwendeten Lösungsmittel waren getrocknet und N_2 -gesättigt.

Quadratsäure wurde von der Fa. Merck bezogen. Quadratsäure-bis(trimethylsilylester) 18 , Tetrakis(triphenylphosphin)platin(0) 24) und (Ethylen)bis(triphenylphosphin)platin(0) 25) wurden nach Literaturangaben, [D₂]Quadratsäure durch Umkristallisieren von Quadratsäure aus D₂O erhalten.

1) Hydridotris(triphenylphosphin)platin(II)-hydrogenquadratat \cdot 2 THF (1): 0.11 g (1 mmol) Quadratsäure und 1.24 g (1 mmol) Pt(PPh₃)₄ werden in 20 ml THF 3 h unter Rückfluß gekocht. Mehrstündiges Stehenlassen bei $-15\,^{\circ}$ C liefert farblose Kristalle, die abgesaugt und mit wenig kaltem THF und Diethylether gewaschen werden; Einengen der Mutterlauge führt zu weiterem Produkt. Die Kristalle werden bei 50 °C i. Hochvak. getrocknet. Die Verbindung kann aus THF umkristallisiert werden. Aus der Mutterlauge wird nach Abziehen des Lösungsmittels und Extraktion mit Pentan Triphenylphosphin isoliert. Ausb. 1.05 g 1 (85%), Zers. ab 125 °C. Leitfähigkeit: 99 cm² mol $^{-1}$ Ω^{-1} in Aceton.

 $C_{66}H_{63}O_6P_3$ Pt (1240.2) Ber. C 63.91 H 5.12 Gef. C 63.71 H 4.83 Die Umsetzung von Pt(PPh₃)₄ mit $\lceil D_2 \rceil$ Quadratsäure erfolgt in gleicher Weise.

2) $(\eta^2$ -Quadratsäure) bis(triphenylphosphin) platin(0) (2): 0.11 g (1 mmol) Quadratsäure und 0.75 g (1 mmol) (PPh₃)₂Pt(C₂H₄) werden in 10 ml THF bis zur Beendigung der Gasentwicklung (ca. 1 h) auf 50°C erhitzt. Nach dem Abkühlen wird filtriert und das Filtrat mit 10 ml Pentan überschichtet. Nach 10 h werden die farblosen Kristalle abgesaugt, mit Diethylether gewaschen und i. Hochvak. bei 40°C getrocknet. Ausb. 0.62 g (74%), Schmp. 160°C.

- 3) Reaktion von 2 mit Natriumethylat: Rühren von 0.83 g (1 mmol) 2 mit 0.14 g (2 mmol) Natriumethylat in 10 ml THF bei Raumtemp, führt zu einer orangeroten Lösung. Nach Filtrieren und Abkühlen lassen sich 0.2 g Pt(PPh₃)₃ isolieren und IR-spektroskopisch durch Vergleich mit einer authentischen Probe identifizieren.
- 4) Umsetzung von Natrium-quadratat mit $(PPh_3)_2Pt(C_2H_4)$: 5 stündiges Rückflußkochen von 0.16 g (1 mmol) Natrium-quadratat mit 0.75 g (1 mmol) $(PPh_3)_2Pt(C_2H_4)$ in 20 ml THF führt zu einer intensiven Rotfärbung der THF-Lösung. Nach Entfernen des Quadratats durch Filtrieren erhält man aus der THF-Lösung durch Auskristallisieren bei $-20\,^{\circ}$ C rote Kristalle von $[Pt(C_6H_4PPh_2)(PPh_2)]_3$.
 - 5) Dihydroxy-1,1-bis(triphenylphosphin)-1-platinacyclopentendion · 0.5 CH₂Cl₂ (3)
- a) 1.24 g (1 mmol) 1 werden in 5 ml Diglyme 2 h auf 130°C erhitzt; dabei erfolgt allmähliche Lösung und Abspaltung von ca. 20 ml Gas. Beim Abkühlen kristallisiert gelbes (PPh₃)₃Pt(CO) aus (Schmp. 100–120°C). Das Diglyme wird i. Hochvak. entfernt und der Rückstand mit 10 ml THF/Diethylether (1:2) verrührt, das gebildete kristalline Produkt abgesaugt und mit Diethylether mehrmals gewaschen. Lösen in CH₂Cl₂ und Überschichten mit Pentan führt zu zitronengelben Kristallen. Ausb. 0.26 g (30%), Schmp. 190–195°C (Zers.).

R. Ugo, F. Cariati und G. La Monica, Inorg. Synth. 11, 105 (1968).
 C. D. Cook und G. S. Jauhal, J. Am. Chem. Soc. 90, 1464 (1968).

- b) 0.83 g (1 mmol) 2 werden in 5 ml Diglyme 30 min auf 130 °C erhitzt. Die Reaktionslösung wird nach dem Abkühlen filtriert und, wie unter a) angegeben, aufgearbeitet. Ausb. 0.52 g (59%).
- c) Durch Alkoholyse von 5: Zur Reaktionslösung von 5 (1 mmol) werden 2 mmol Butanol gegeben. Es wird 1 h bei Raumtemp, gerührt und die Lösung eingeengt. Führt man die Umsetzung zu 5 in Benzol durch, dann kristallisiert 3 ohne Einengen aus. Die Reinigung erfolgt wie bei 5 angegeben. Ausb. 0.78 g (80%).
- 6) Reaktion von 3 mit Natriumethylat: Zur Suspension von 0.87 g (1 mmol) 3 in 5 ml THF wird eine Lösung von 2 mmol NaOEt in 2 ml Ethanol und 10 ml THF getropft. Augenblicklich erfolgt Orangefärbung, und die Ausgangsverbindung geht allmählich in Lösung. Nach beendetem Zutropfen wird die orangerote Lösung auf 1/4 des Volumens eingeengt; das dabei ausgefallene Pt(PPh₃)₃ wird abgesaugt und mit Diethylether gewaschen, Ausb. 0.22 g.
- 7) 1,1-Bis(triphenylphosphin)bis(trimethylsiloxy)-1-platinacyclopentendion (5): Zur Lösung von 0.75 g (1 mmol) (PPh₃)₂Pt(C₂H₄) in 10 ml THF werden 0.25 g (1 mmol) Quadratsäure-bis-(trimethylsilylester), gelöst in 10 ml THF, getropft. Man rührt 12 h bei Raumtemp., engt die Lösung auf 1/3 des Volumens ein und überschichtet mit Pentan. Nach 2 d bei -15°C werden die ausgefallenen Kristalle abgesaugt und mit Pentan gewaschen. Gelbliche Kristalle, Ausb. 0.79 g (81%). Infolge der hohen Feuchtigkeitsempfindlichkeit wurden keine befriedigenden Analysenwerte erhalten.

[56/78]